Click

links updated successfully ☺️☺️☺️

Monday 4 September 2017


SEMESTER – IV

CE6402 Strength of Materials
PM6401 Fluid Mechanics
PC6501 Heat Transfer
MA6459 Numerical Methods
PC6301 Industrial Chemical Technology
PC6402 Engineering Thermodynamics

PRACTICALS
CH6312 Physical Chemistry Laboratory
CH6512 Mechanical Operations  Laboratory
PM6411 Fluid Mechanics Laboratory



CE6402                  STRENGTH OF MATERIALS                                                                                                                                                    

OBJECTIVES:    To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam  To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.

 UNIT I  ENERGY PRINCIPLES                                            
Strain energy and strain energy density – strain energy due to axial load, shear, flexure and torsion – Castigliano’s theorems – Maxwell’s reciprocal theorems -  Principle of virtual work – application of energy theorems for computing deflections in beams and trusses  - Williot Mohr's Diagram.  

UNIT II  INDETERMINATE BEAMS                                                      
Concept of Analysis - Propped cantilever and fixed beams-fixed end moments and reactions –  Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

UNIT III COLUMNS AND CYLINDER                                                        
 Euler’s theory of long columns – critical loads for prismatic columns with different end conditions; Rankine-Gordon formula for eccentrically loaded columns – Eccentrically loaded short columns – middle third rule – core section – Thick cylinders – Compound cylinders.

UNIT IV STATE OF STRESS IN THREE DIMENSIONS                              
Determination of principal stresses and principal planes – Volumetric strain –Theories of failure – Principal stress - Principal strain – shear stress – Strain energy and distortion energy theories – application in analysis of stress, load carrying capacity.

UNIT V ADVANCED TOPICS IN BENDING OF BEAMS                              
Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre - curved beams – Winkler Bach formula.                                

OUTCOMES:  students will have through knowledge in analysis of indeterminate beams and use of energy method for estimating the slope and deflections of beams and trusses.  they will be in a position to assess the behaviour of columns, beams and failure of materials.
TEXT BOOKS:
1. Rajput R.K.  "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New  Delhi,  2010.
2. Egor P Popov, “Engineering Mechanics of Solids”, 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2012
REFERENCES:
 1. Kazimi S.M.A, “Solid Mechanics”, Tata McGraw-Hill Publishing Co., New Delhi, 2003
 2. William A .Nash, “Theory and Problems of Strength of Materials”, Schaum’s Outline Series, Tata McGraw Hill Publishing company ,2007.
 3. Punmia B.C."Theory of Structures" (SMTS) Vol 1&II, Laxmi Publishing Pvt Ltd, New Delhi 2004.
 4. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt.Ltd., New Delhi, 2011.



   PM6401                       FLUID MECHANICS

 OBJECTIVE: To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics for through pipes and porous medium, flow measurement and fluid machineries

UNIT I         PROPERTIES OF FLUIDS AND CONCEPT OF PRESSURE                    
Introduction – Physical properties of fluids – Types of fluids – Fluid statics and its applications - Pressure – Density – Height relationships – Pressure measurement – Units and dimensions – Dimensional analysis – Dimensionless numbers.

UNIT II        MOMEMTUM BALANCE AND ITS APPLICATIONS                    
 Kinematics of fluid flow – Stream line – Stream tube – Velocity potential – Newtonian and non-newtonian fluids – Time dependent fluids – Reynolds number experiment and significance –Continuity Equation – Momentum balance – Potential flow – Bernoulli's equation – Correction for fluid friction – Correction for pump work.

UNIT III        FLOW OF INCOMPRESSIBLE FLUIDS THROUGH DUCTS                  
  Flow of incompressible fluids in pipes – Laminar and turbulent flow through closed conduits –Velocity profile and friction factor for smooth and rough pipes – Heat loss due to friction in pipes and Fittings – Introduction to compressible flow – Isentropic flow through convergent and divergent nozzles and sonic velocity.

UNIT IV        FLOW OF FLUIDS THROUGH SOLIDS                      
 Form drag – Skin drag – Drag co-efficient – Flow around solids and packed beds – Friction factor for packed beds – Ergun's Equation – Motion of particles through fluids – Motion under gravitational and centrifugal fields – Terminal settling velocity – Fluidization – Mechanism – Types – General properties – Applications.

 UNIT V   TRANSPORTATION AND METERING                    
  Measurement of fluid flow – Orifice meter – Venturi meter – Pitot tube – Rotameter– Weirs and notches – Hot wire anemometers – Transportation of fluids – Positive displacement pumps – Rotary and Reciprocating pumps – Centrifugal pumps –Performance and characteristics – Air lift and diaphragm pumps.                                                                                                          
OUTCOME: To develop a student’s skills in analyzing fluid flows through the proper use of modeling and the application of the basic fluid-flow principles.

TEXT BOOKS:
  1. McCabe, W.L., Smith, J.C. and Harriott, P., "Unit operations of Chemical Engineering", Seventh Edition, McGraw-Hill, 2004.
  2. Coulson, J.M., and Richardson, J.F., "Coulson and Richardson’s Chemical Engineering", Vol. I, 3rd Edition, Butterworth Heinemann Publishers, 2004.   REFERENCES:
1. Bansal, R.K., “Fluid Mechanics and Hydraulic machines”, Laxmi Publications (P) Ltd., 1995.
2. Nevers, N.D., "Fluid Mechanics for Chemical Engineers", McGraw-Hill, 1991.
3. De Nevers, L., “Fluid Mechanics for Chemical Engineers”, McGraw-Hill, 1994.  


 PC6501               HEAT TRANSFER  

OBJECTIVE: To learn heat transfer by conduction, convection and radiation and heat transfer equipments like evaporator and heat exchanger

 UNIT I   CONDUCTION                                    
Modes of heat transfer – Steady and unsteady state heat transfer – Concept of heat conduction – Fourier’s law of heat conduction – General heat conduction equation in spherical coordinates – One-dimensional steady state heat conduction equation for flat plate, hollow cylinder, hollow sphere –Analogy between flow of heat and flow of electricity – Effect of temperature on thermal conductivity – Critical insulation thickness– Transient heat conduction – Lumped heat parameter model.

UNIT II  CONVECTION                                
 Concept of heat transfer by convection – Natural and forced convection – Concept of LMTD – Local and overall heat transfer coefficient – Application of dimension alanalysis for convection – Empirical Equations for forced convection under laminar, transient and turbulent conditions – Empirical equations for natural convection –Influence of boundary layer on heat transfer – Heat transfer through packed and fluidized beds – Heat transfer with phase change: boiling, vaporization and condensation.

UNIT III  RADIATION                                  
 Concept of thermal radiations – Black body concept – Stefan Boltzman’s law –Emissive power – Black body radiation – Emissivity – Planck’s law – Radiation between black surfaces – Gray surfaces – Radiation shields – Radiation applications– Pipe still heaters.

UNIT IV  HEAT EXCHANGERS                                  
 Heat exchanger types – Parallel and counter flow heat exchangers – Overall heat transfer coefficient – Log mean temperature difference for single pass – Correction factor for multi pass heat exchangers – Heat exchanger effectiveness – Number of transfer units – Chart for different configurations – Dirt factor.

UNIT V  EVAPORATORS                                  
 Evaporation – Single effect and multiple effect evaporation – Boiling point elevation –Effect of liquid head – Capacity and economy of multiple effect evaporators –Evaporation equipments.

   OUTCOME:  Students gain knowledge in various heat transfer methodology in process engineering  and to design heat transfer equipments such as furnace, boilers, heat  exchangers evaporation
 TEXT BOOKS:
1. Kumar, D.S., “Heat and Mass Transfer”, 5th Edition, S.K. Kataria and Sons, 2000.
2. McCabe,W.L. and Smith, J.C., “Unit Operations in Chemical Engineering", 5th     Edition. McGraw Hill Publishing Co., 2001.

REFERENCES:
1. Kern, D.Q., “Process Heat Transfer", Tata McGraw Hill Publishing Co., 1990.
2. Hollman, “Heat Transfer”, 8th Edition, McGraw Hill, 1997. 3. Kreith, F., “Principles of Heat Transfer”, 4th Edition, Harper and Row, 1976.  


 MA6459                                           NUMERICAL METHODS                                                                                                                                                                      

 OBJECTIVE: This course aims at providing the necessary basic concepts of a few numerical methods and give procedures for solving numerically different kinds of problems occurring in Engineering and Technology.

 UNIT I      SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS          
Solution of algebraic and transcendental equations - Fixed point iteration method – Newton-Raphson method- Solution of linear system of equations - Gauss elimination method – Pivoting - Gauss-Jordan methods – Iterative methods of Gauss-Jacobi and Gauss-Seidel - Matrix Inversion by Gauss-Jordan method - Eigenvalues of a matrix by Power method.

UNIT II      INTERPOLATION AND APPROXIMATION                                            
 Interpolation with unequal intervals - Lagrange interpolation – Newton’s divided difference interpolation – Cubic Splines - Interpolation with equal intervals - Newton’s forward and backward difference formulae.

UNIT III    NUMERICAL DIFFERENTIATION AND INTEGRATION                            
Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson’s 1/3 rule – Romberg’s method - Two point and three point Gaussian quadrature formulae – Evaluation of double integrals by Trapezoidal and Simpson’s rules.

UNIT IV     INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL  EQUATIONS                    
 Single step-methods - Taylor’s series method - Euler’s method - Modified Euler’s method - Fourth order Runge-Kutta method for solving first order equations - Multi-step methods - Milne’s and Adams-Bashforth predictor-corrector methods for solving first order equations.

 UNIT V      BOUNDARY VALUE PROBLEMS IN ORDINARY AND PARTIAL DIFFERENTIAL  EQUATIONS                                  
           Finite difference methods for solving two-point linear boundary value problems - Finite difference techniques for the solution of two dimensional Laplace’s and Poisson’s equations on rectangular domain – One-dimensional heat-flow equation by explicit and implicit (Crank Nicholson) methods – One-dimensional wave equation by explicit method.                                                                                    

   OUTCOME:  It helps the students to have a clear perception of the power of numerical techniques, ideas and would be able to demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.

 TEXT BOOKS:
1. Grewal, B.S. and Grewal,J.S., “Numerical methods in Engineering and  Science”, Khanna Publishers, New Delhi, 9th Edition, 2007.
2. Sankara Rao, K., “Numerical methods for Scientists and Engineers’, Prentice  Hall of India Private Ltd., New Delhi, 3rd Edition, 2007.

REFERENCES:
1. Chapra, S. C., and Canale, R. P., “Numerical Methods for Engineers”, Tata  McGraw-Hill, New Delhi, 5th Edition, 2007.
2. Gerald, C. F., and Wheatley, P. O., “Applied Numerical Analysis”, Pearson   Education, Asia, New Delhi, 6th Edition, 2006.
3. Brian Bradie, “A friendly introduction to Numerical analysis”, Pearson Education,  Asia, New Delhi, 2007.



  PC6301                  INDUSTRIAL CHEMICAL TECHNOLOGY

OBJECTIVE: To gain Knowledge on various aspects of production engineering and understand the practical methods of production in a chemical factory.

UNIT  I                   SULFUR,  SULFURIC  ACID  AND  CEMENT                  
Sulfur,  Raw  materials  Sources,  Mining  and  production  of  Sulfur  –  Sulfuric  acid,  Methods  of production  of  Sulfuric  acid  –  Contact  process  –  Chamber  process.    Cement  –  properties  of Cement  –  Methods  of  production  –  Overall  factors  for  Cement  industry.

 UNIT  II   FERTILIZER  INDUSTRY,  FUEL  AND  INDUSTRIAL  GASES                
 Major  Components  of  Fertilizer  industries  –  Nitrogen  industries,  ammonia,  nitric  acid,  urea  – Phosphorus  industries  -  Phosphorus,  Phosphoric  acid,  Super  Phosphate  –  Potassium  chloride, Potassium  Sulphate  –  Fuel  Gases  –  Producer  gas,  Water  gas,  Coke  oven  gas,  Natural  gas, Liquefied  natural  gas  –  Industrial  gases  –  Carbon  dioxide,  hydrogen,  nitrogen  and  oxygen.

UNIT  III              PULP,  PAPER,  SUGAR  AND  STARCH INDUSTRIES                  
                 Pulp  –  Methods  of  production  –  Comparison  of  pulping  processes.    Paper  –  types  of  paper products,  Raw  materials,  Methods  of  production.    Sugar  –  Methods  of  production  –  by  products of  the  Sugar  industry  –  Starch  –  Methods  of  production,  Starch  derivations.

 UNIT  IV PETROLEUM AND PETRO CHEMICAL INDUSTRIES                  
Petroleum  –  Chemical  Composition,  Classification  of  crude  petroleum,  Petroleum  Refinery products  –  Petroleum  Conversion  processes  –  Pyrolysis  and  Cracking,  Reforming Polymerization,  isomerization  and  Alkylation  –  petrochemicals  –  methanol,  chloro  methanol, Acetylene  and  ethylene,  Isopropanol,  Acrylonitrile,  Buta  diane  –  Chemicals  from  Aromatics  -   Benzene,  Toluene  and  Xylene.

UNIT  V RUBBERS,  POLYMERS  AND SYNTHETIC  FIBRE                              
 Natural  and  Synthetic  rubber,  SBR  –  Silicone  rubber  –  polymer  –  physical  –  chemical  structure of  polymers,  Thermosetting  and  Thermoplastic  materials  -  Polymer  manufacturing  processes  – polyethylene,  polystyrene  –  Resins  phenolic  and  epoxy  resins  –  Synthetic  Fibers  –  Viscose rayon,  Polyamides  and  polyesters.

 OUTCOME:   Student  can  classify  the  chemical  process  industry  into  industrial  categories  of  base, intermediate    end-products    and  specialty  chemicals    manufacturers.
TEXT  BOOKS:
1.    Dryden,  C.E,  Outlines  of  Chemical  technology,  II  Ed.,  Affiliate  East  West  press,  2003.
2.    Moulin,  J.A.,  M.  Makkee,  and  Diepen,  A.V.,  Chemical  Process  Technology,  Wiley,   2001.

REFERENCES:
 1.  Austin,  G.T.,  Shreve’s  “Chemical  Process  Industries”,  5th  ed.,  McGraw-Hill,  1998
 2.  Srikumar  Koyikkal,”Chemical  Process  Technology  and  Simulation”,PHI    Learning  Ltd (2013).



PC6402                                      ENGINEERING  THERMODYNAMICS  

 OBJECTIVE: Students  will  learn  PVT  behaviour  of  fluids,  laws  of  thermodynamics,  thermodynamic  property relations  and  their  application  to  fluid  flow,  power  generation  and  refrigeration  processes.

UNIT  I     ZEROTH  AND FIRST  LAWS,  PROPERTIES OF PURE  SUBSTANCES        
                               Definitions  and  Concepts.  Property,  Thermodynamic  State.    Equilibrium,  Energy,    Work.   Zeroth  Law  of  Thermodynamics,  Temperature  Scale.  Pure  substance,  Phase,  Simple compressible  substance,  Ideal  gas  Equation  of  State,  Law  of  corresponding  states, Compressibility  chart,  Pressure  –Volume  and  Temperature-volume  Phase  diagrams.  Mollier diagram.  First  Law  of  Thermodynamics  and  its  consequences.

UNIT  II              APPLICATION  OF  I  LAW  TO  STEADY - STATE  PROCESSES,  II LAW            
     Application  of  I  Law  of  Thermodynamics  for  Flow  Process.  Steady-state  processes.  II  Law  of Thermodynamics  and  its  Applications:  Limitations  of  the  I  Law  of  Thermodynamics,  Heat Engine,  Heat  Pump/Refrigerator  II  Law  of  Thermodynamics  –  Kelvin  Planck  and  Clausius statements.    Reversible  and  irreversible  processes,Criterion  of  reversibility,  Carnot  cycle  and Carnot  principles,  Thermodynamic  Temperature  scale,  Clausius  inequality,  Entropy.

 UNIT  III             POWER CYCLES, THERMODYNAMIC POTENTIALS,  EQUILIBRIA  AND STABILITY                          
Power  and  Refrigeration  Cycles.  Thermodynamic  Potentials.  Maxwell  relations.   Thermodynamic  relations.    Equilibria  and  stability.  Maxwell  construction,  Gibbs  Phase  Rule. Clapeyron  equation  and  vapor  pressure  correlations.

UNIT  IV              PROPERTIES  OF PURE  COMPONENTS  AND  MIXTURES                                    
 Pure  component  properties:  Equation  of  state.  Ideal  gas  heat  capacities,  fundamental equations  from  experimental  data,  fugacity  and  corresponding  states.  Mixture  Properties: Mixing  function.  Gibbs-Duhem  relation  for  mixtures,  partial  molar  quantities.  Ideal  gas  mixtures and  fugacities,  ideal  mixtures  and  activities,  excess  functions.  Gibbs  free  energy  models, infinite  dilution  properties.  Henry’s  Law

UNIT  V  PHASE  EQUILIBRIA  AND  CHEMICAL  REACTION    EQUILIBRIA                        
Phase  Equilibira  of  Mixtures.  Osmotic  pressure  and  Osmotic  coefficients.  Boiling  point elevation  and  freezing  point  depression.  Chemical  Reaction  Equilibria.  Reaction  extent  and Independent  reactions.  Equilibrium  criteria  and  equilibrium  constant.  Standard  enthalpies  and Gibbs  free  energy,  temperature  and  pressure  effects  on  reactions,  heterogeneous  reaction, multiple  chemical  reactions

 OUTCOME:   Understand  the  terminology  associated  with  engineering  thermodynamics.  Understand  the concepts  of  heat,  work  and  energy  conversion,  and  can  calculate  heat  and  work  quantities  for industrial  processes.
TEXT  BOOKS:
 1.  Sonntag,  Borgnakke,  Van  Wylen,  Fundamentals  of  Thermodynamics,  7th  Edition,    Wiley India,  New          Delhi,  2009.
 2.  Smith,  van  Ness  and  Abbott,  “Chemical  Engineering  Thermodynamics”,  7th  Edition, McGraw  Hill,    New  York,  2005

 REFERENCES:
1.  S.  I.  Sandler,  Chemical,  Biochemical  and  Engineering  Thermodynamics,  Wiley  New  York, 2006
2.  Y  V  C  Rao,  “Chemical  Engineering  Thermodynamics”,  Universities  Press,  Hyderabad 2005.
3.  Pradeep  ahuja,”  Chemical  Engineering  Thermodynamics”,  PHI  Learning  Ltd  (2009).
4.  Gopinath  Halder,”  Introduction  to  Chemical  Engineering  Thermodynamics”,  PHI      Learning Ltd  (2009).




CH6312                              PHYSICAL CHEMISTRY LABORATORY                                                                       (Any Ten experiments)                                                            

OBJECTIVE:  To improve the practical knowledge on the properties and characteristics of solvents and mixtures.

  LIST OF EXPERIMENTS
1.   Partition coefficient of iodine between two immiscible solvents,
2.   Equilibrium constant of KI + I2             KI3
3.   Phase diagram of binary system
4.   Solubility curve for a ternary system
5.   Verification of Ostwald dilution law
6.   Galvanostatic / Potentiostatic polarisation measurements
8.   Impedence measurements
9.   Adsorption isotherm
10. Heat of solution
11. Determination of acid value in the given oils
12. Molecular weight determination

  OUTCOME:  The student is able to  determine the  properties and characteristics of solvents and mixtures.

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS
 1. Micro Calorimeter
2. Beckman Thermometers. Glasswares,
3. Thermometers 0 to 110 – 0°. Bottle Shakers .pH meters
4. Pressure Glass bottles. Standard Cells. Multimeters
5. Viscometers-Ostwald Cannan Ubbelholde. Voltage Stabiliser
6. Stalalmometer
7. Surface Tension Meter .Tape Heaters
8. Mantle Heaters
9. DC Power Supply. Thermostat. Cyrostats

REFERENCE:
1. Physical Chemistry experiments by Alexander Findley, McGraw-Hill IV Edition, (1976).  



 CH6512                         MECHANICAL OPERATIONS LABORATORY

AIM
 To impart knowledge on mechanical operations by practice

 OBJECTIVE: Students develop a sound working knowledge on different types of crushing equipments and separation characteristics of different mechanical operation separators.

LIST OF EXPERIMENTS
1. Sieve analysis
2. Batch filtration studies using a Leaf filter
3. Batch filtration studies using a Plate and Frame Filter press
4. Characteristics of batch Sedimentation
5. Reduction ratio in Jaw Crusher
6. Reduction ratio in Ball mill
7. Separation characteristics of Cyclone separator
8. Reduction ratio of Roll Crusher
9. Separation characteristics of Elutriator
10. Reduction ratio of Drop weight crusher
11. Size separation using Sub-Sieving

    OUTCOME: Student’s gain the practical knowledge and hands on various separation techniques like filtration, sedimentation, screening, elutriation, centrifugation principles which is having wide applications in various industries

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS  
1. Sieve shaker  
2. Leaf filter  
3. Plate and Frame Filter Press
4. Sedimentation Jar
5. Jaw Crusher
6. Ball Mill
7. Cyclone Separator
8. Roll Crusher
9. Elutriator
10. Drop Weight Crusher    





PM6411                     FLUID MECHANICS LABORATORY

OBJECTIVE: To learn experimentally to calibrate flow meters, find pressure loss for fluid flows and determine pump characteristics.

LIST OF EXPERIMENTS
 1. Viscosity measurement of non Newtonian fluids
 2. Calibration of constant and variable head meters
 3. Calibration of weirs and notches
 4. Open drum orifice and draining time
 5. Flow through straight pipe
 6. Flow through annular pipe
 7. Flow through helical coil and spiral coil
  8. Losses in pipe fittings and valves
  9. Characteristic curves of pumps
10. Pressure drop studies in packed column
11. Hydrodynamics of fluidized bed
12. Drag coefficient of solid particle

   OUTCOME: Practical knowledge on the measurement of fluid Flow and their  characteristics at different operating conditions.

LIST  OF  EQUIPMENT  FOR  BATCH OF 30  STUDENTS
   1.  Viscometer
   2.  Venturi  meter
   3.  Orifice  meter
   4.  Rotameter
   5.  Weir
   6.  Open drum  with  orifice
   7.  Pipes  and  fittings
   8.  Helical  and  spiral  coils
   9.  Centrifugal  pump
10.  Packed  column
11.  Fluidized  bed