Click

links updated successfully ☺️☺️☺️

Saturday, 2 September 2017


SEMESTER – VIII   


List of electives
CH6002 Fluidization Engineering
PC6005 Energy Management in Chemical Industries
PC6004 Novel Separation Process
PC6006 Multicomponent Distillation
PC6008 Polymer Technology



CH6002  FLUIDIZATION ENGINEERING

OBJECTIVE:  To  learn the design Aspects of Heat and mass transfer in fluidized beds.
  UNIT I   BASICS OF FLUIDIZATION                        
 Packed bed – Velocity – Pressure drop relations – Correlations of Ergun, Kozneykarman – On set of fluidization – Properties of fluidized beds – Development of fluidization from fixed bed.
UNIT II  FLUIDIZED BED TYPES                        
  Minimum fluidization conditions – Expanded bed – Elutriation – Moving solids and dilute phase – spouted bed.
  UNIT III  DESIGN ASPECTS                        
Channeling – Bed expansion in liquid – Solid and gas – Solid fluidizations. Design aspects of fluidized bed systems.
 UNIT IV  HEAT AND MASS TRANSFER IN FLUIDIZED BEDS                    
 Heat and mass transfer in fluidized bed systems – Industrial applications and case studies of fluidized bed systems.
 UNIT V  OTHER TYPES OF FLUIDIZATION                      
Single stage and multistage fluidization – Collection of fines – Use of cyclones.  

 OUTCOME: Students gain the knowledge on fluidization phenomenon, behavior of fluidized beds and its industrial applications.

 TEXT BOOKS: 1. Levenspiel, “Fluidization Engineering”, 2nd Edition, Butterworth – Heinmann, 1991. 2. Robert H. Perry and Don W. Green, “Perry’s Chemical Engineer’s Hand Book”, 7th Edition, Mc Graw Hill – International, 1997.  REFERENCES: 1. Rowe and Davidson, “Fluidization”, Academic Press ,1971. 2. Leva, M., “Fluidization”, McGraw Hill Book Co, 1959. 3. Wen-Ching Yang., “Handbook of Fluidization and Fluid-Particle Systems”, Marcel Dekker Inc, 2003.


 PC6005                  ENERGY MANAGEMENT IN CHEMICAL INDUSTRIES
   OBJECTIVE:  To understand the interaction between different parts of the energy system
 UNIT I   ENERGY RESOURCES – A GLOBAL VIEW                    
 Energy sources – Coal oil, natural gas – Nuclear energy – Hydro electricity – Other fossil fuels – Geothermal – Supply and demand – Depletion of resources of resources – Need for conservation – Uncertainties – National and international issues.
 UNIT II  ENERGY AND ENVIRONMENT                      
 Energy – Various forms – Energy storage – Structural properties of environment – Biogeo – chemical cycles – Society and environment population and technology.
UNIT III  MANAGEMENT OF ENERGY CONSERVATION IN CHEMICAL   INDUSTRIES                                                                    
Chemical industries – Classification – Conservation in unit operation such as separation – Cooling tower – Drying – Conservation applied to refineries, petrochemical, fertilizers, cement, pulp and paper, food industries – Chloroalkali industries – Conservation using optimization techniques.
 UNIT IV  ENERGY ALTERNATIVES                                  
 Sources of continuous power – Wind and water – Geothermal – Tidal and solar power – MHD, fuel cells – Hydrogen as fuel.
 UNIT V  ECONOMIC BALANCE IN ENERGY CONSUMPTION                    
 Cost analysis – Capacity – Production rate – System rate – System cost analysis – Corporate models – Production analysis and production using fuel inventories – Input output analysis – Economics – Tariffs.                      

 OUTCOME: Students have the ability to apply the fundamentals of energy conversion and applications.

  TEXT BOOKS: 1. Krentz, J. H., “Energy Conservation and Utilisation”, Allyn and Bacur Inc., 1976. 2. Gramlay, G. M., “Energy”, Macmillon Publishing Co., 1975.  REFERENCES: 1. Rused C.K., “Elements of Energy Conservation”, McGraw – Hill Book Co., 1985. 2. Judson King; “Separation Processes”, McGraw – Hill Book Co., 1985. 3. Samir Sarkar, “Fuels and Combustion”, 2nd Edition, Orient Longman Publication, 1988.


PC6004    NOVEL SEPARATION PROCESS

   OBJECTIVE :  To learn the principle and technical concept of advanced separation processes.  UNIT I  BASICS OF SEPARATION PROCESS          
Review of Conventional Processes, Recent advances in Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances,Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.
 UNIT II             MEMBRANE SEPARATIONS        
Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fiber Membrane Reactors and their relative merits, commercial, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nanofiltration, Ultra filtration and Micro filtration, Ceramic- Hybrid process and Biological Membranes.
 UNIT III            SEPARATION BY ADSORPTION
Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity  Chromatography and Immuno Chromatography, Recent Trends in Adsorption.
 UNIT IV            INORGANIC SEPARATIONS
Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Dielectrophoresis, Ion Exchange Chromatography and Eletrodialysis, EDR, Bipolar Membranes.
 UNIT V            OTHER TECHNIQUES
Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques

OUTCOME:  Fully understand key concepts of separation processes including equilibrium  stages, reflux, countercurrent contacting, limiting cases, efficiency and mass  transport effects.

 TEXT BOOKS:  1. Schoen, H.M., “New Chemical Engineering Separation Techniques”, Interscience Publishers,1972.  2. Treybal, R.E., “Mass Transfer Operations”, 3rd Edition, McGraw Hill Book Co., 1980.   REFERENCES: 1. King, C. J., “Separation Processes”, Tata McGraw Hill, 1982.  2. Roussel, R. W., “Handbook of Separation Process Technology”, John Wiley, New York, 1987 3. Nakagawal, O. V., “Membrane Science and Technology”’ Marcel Dekkar, 1992.


PC6006                            MULTICOMPONENT DISTILLATION      

OBJECTIVE:  To understand the concepts of Multicomponent distillation systems.   UNIT I   THERMODYNAMIC PRINCIPLES                      
 Fundamental Thermodynamic principles involved in the calculation of vapor – liquid equilibria and enthalpies of multi component mixtures – Use of multiple equation of state for the calculation of K values – Estimation of the fugacity coefficients for the vapor phase of polar gas mixtures – calculation of liquid – phase activity coefficients.
UNIT  II   THERMODYNAMIC  PROPERTY EVALUATION                        
Fundamental  principles  involved  in  the  separation  of  multi  component  mixtures  – Determination  of  bubble-point  and  Dew  Point  Temperatures  for  multi  component  mixtures  – equilibrium  flash  distillation  calculations  for  multi  component  mixtures  –  separation  of  multi component  mixtures  at  total  reflux.
 UNIT  III   MINIMUM REFLUX  RATIO  FOR  MCD SYSTEM                    
 General  considerations  in  the  design  of  columns  –  Column  sequencing  –  Heuristics  for  column sequencing  –  Key  components  –  Distributed  components  –  Non-Distributed  components  – Adjacent  keys.  Definition  of  minimum  reflux  ratio  –  calculation  of  Rm  for  multi  component distillation  –  Underwood  method  –  Colburn  method.
 UNIT  IV   VARIOUS  METHODS  OF MCD COLUMN DESIGN                  
 Theta  method  of  convergence  –  Kb  method  and  the  constant  composition  method  – Application  of  the  Theta  method  to  complex  columns  and  to  system  of  columns  –  Lewis Matheson  method  –Stage  and  reflux  requirements  –  Short  cut  methods  and  Simplified graphical  procedures. UNIT  V   VARIOUS  TYPES OF  MCD COLUMNS                      
Design  of  sieve,  bubble  cap,  valve  trays  and  structured  packing  columns  for  multi  component distillation  –  computation  of  plate  efficiencies.

 OUTCOME:   Students  able  to  design  multicomponent  distillation  unit.  They  learn  about  various  types  of  MCD column.

TEXT  BOOKS: 1.  Holland,  C.D.,  “Fundamentals  of  Multi  Component  Distillation”,  McGraw  Hill  Book Company,  1981 2.  Van Winkle,  “Distillation  Operations”,  McGraw  Hill  Publications,  1987. REFERENCES:   1.  King,  C.J.,  “Separation  Process  Principles”,  Mc  Graw  Publications,  1986. 2.  Treybal,  R.E.,  “Mass  Ttransfer  Operations”,  5th  Edition,  Mc  Graw  Hill  publications. 1996.   3.    Mc  Cabe  and  Smith,  J.C.,  Harriot,  “Unit  Operation  of  Chemical  Engineering”,  6th Edition,  McGraw    Hill,  2001

PC6008   POLYMER TECHNOLOGY        
        
OBJECTIVE:  Understand to compute molecular weight averages from the molecular weight distribution, Condensation polymerization and transition in polymers.

 UNIT I   INTRODUCTION
History of Macromolecules – structure of natural products like cellulose, rubber,proteins – concepts of macro molecules – Staudinger’s theory of macromolecules – difference between simple organic molecules and macromolecules.
 UNIT II ADDITION POLYMERIZATION
Chemistry of Olefins and Dienes – double bonds – Chemistry of free radicals – monomers – functionality – Polymerization: Initiation – types of initiation – free radical polymerization – cationic polymerization – anionic polymerization – coordination polymerization – industrial polymerization – bulk, emulsion, suspension and solution polymerization techniques – Kinetics – Copolymerization concepts.
 UNIT III CONDENSATION POLYMERIZATION
Simple condensation reactions – Extension of condensation reactions to polymer synthesis – functional group reactivity – polycondensation – kinetics of polycondensation- Carother’s equation – Linear polymers by polycondensation – Interfacial polymerization – crosslinked polymers by condensation – gel point.
 UNIT IV MOLECULAR WEIGHTS OF POLYMERS  
Difference in molecular weights between simple molecules and polymers – number average and weight average molecular weights – Degree of polymerization and molecular weight – molecular weight distribution – Polydispersity – molecular weight determination. Different methods – Gel Permeation Chromatography – Osmometry, Light Scattering.
 UNIT V TRANSITIONS IN POLYMERS  
 First and second order transitions – Glass transition, Tg – multiple transitions in polymers – experimental study – significance of transition temperatures – crystallinity in polymers – effect of crystallization – in polymers – factors affecting crystallization crystal nucleation and growth – relationship between Tg and Tm – Relationship between properties and crystalline structure.

  TOTAL : 45 PERIODS OUTCOME: Student should be able to demonstrate knowledge and understanding the principles related to the synthesis and characterization of polymers.

TEXTBOOKS:
1. Billmeyer.F.W.,Jr, Text Book of Polymer Science, Ed. Wiley-Interscience, 1984. 2. Seymour.R.B., and Carraher.C.E., Jr., Polymer Chemistry, 2nd Ed., Marcel Dekker, 1988.
3. Gowariker.V.T., Viswanathan.N.V., and Sreedar.J., Polymer Science, Wiley Eastern Ltd., 1988.   REFERENCES: 1. Joel,R.F; Polymer Science and Technology, Eastern Economy Edition, 1999.  2. Rodriguez, F., Cohen.C., Oberic.K and Arches, L.A., Principles of Polymer Systems, 5th edition, Taylor an